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Abstract

» This dissertation concerns the problem of routing wires on a single layer of an
integrated circuit or printed circuit board, starting from a sketch of the layer. A
sketch specifies the positions of layout features and the topology of the interconnect-
ing wires. Efficient algorithms are presented that (1) determine whether a sketch
is routable, and (2) produce for a routable sketch a proper routing that, minimizes
both individual and total wire length. Both algorithms run in time O(#2log n) on
input of size n, and both are simple to implement. They can be adapted to a variety
of wiring models, and they subsume most of the polynomial-time algorithms in the
literature for single-layer routing and routability testing.

The algorithms are based on two theorems concerning the routings of a sketch.
One states that a sketch is routable if and only if for each cut between fixed features,
the total amount of wiring forced to cross the cut is no greater than the length of
the cut. The second theorem states that every routable sketch has a routing that
simultaneously minimizes the length of every wire, and it characterizes the wires in
this routing. To formalize and prove these theorems, a rich mathematical theory
of single-layer wire routing is developed. Its central tool, which is new to the wire-
routing literature, is the lifting of wires and cuts to a simply connected topological
covering space of the routing region. .

As another application of this theory, the thesis presents a general algorithm for
one-dimensional layout compaction. Given a routable sketch. it finds a proper sketch /
of minimal width obtainable by displacing the features horizontally and moving the
wires, always maintaining routability. Thus it automatically inserts into wires all
jog points that help in compressing the layout. In the worst case the compaction !
algorithm uses time O(n*) and space O(n®) on input of size n. The technique on
which the algorithm is founded is nearly independent of the wiring model, and it

0 applies to many-layer as well as single-layer compaction problems.

N

)

o Key words: channel routing, compaction, computational geometry, constraint solv-
L . . i . . . . .

o ing, covering space, homotopy, global routing, graph algorithms, jog insertion, river
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routing, routability. routing, topology. VLSI layout, wiring, wire length minimiza-
tion.
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Preface

This dissertation is the product of a four-year study on the general problem of
wire routing under separation and homotopy constraints. Originally intended as
a master’s thesis, the project quickly grew out of control when repeated attempts
to solve the fundamental problems ended in failure. The driving force behind the
growth was a desire for mathematical rigor. I devised the central algorithm of
this thesis, the sketch routing algorithm, and was convinced of its correctness, long
before finding any technical justification for it. All attempted correctness proofs
using elementary tools broke down, and the breakdowns could be traced to a single
source: a lack of technical tools for dealing with the concept of homotopy at the
heart of the routing problem. Since homotopy is a topological notion, I turned to
algebraic topology, and thus was born the theory that accounts for the bulk of this
thesis.

Though my approach to single-layer wire routing has been lengthier and more
involved than one might like, I expect it to support further fruitful work on wire
routing. both practical and theoretical. This research has had two goals: to establish
certain theorems and algorithms concerning wire routing and compaction, and to
blaze a trail through the vast terrain between homotopy theory and circuit design.
The tension between these aims accounts for the technical depth of this study. To
read it carefully is likely to be a laborious task; yet I hope scholars of algorithms
will find it rewarding. Being a worked-out example of wire routing in two specific
models. this dissertation may serve as a source of ideas and a prototype for studies
of other models of wiring. Subsequent treatments should be simpler, or at least
easier, with the steps and missteps of this thesis as a guide. And as a first cut at
a theory of single-layer routing, it demonstrates the power of bringing topological
concepts to bear on routing problems.

Organization and prerequisites

Because this thesis addresses topics that run from topology through algorithms
and circuit design. I have tried to make it accessible to specialists and students in
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Preface

several areas. The danger, of course, is that I might make it accessible to nobody. To
guard against that possibility, I have separated the algorithms from the underlying
mathematics, and confined the advanced topology to a pair of chapters, namely
Chapters 2 and 3. The glossary includes definitions of mathematical terms that
may be unfamiliar, and 1 have provided a table of notations on pages 10-12.

Those who are primarily interested in wire routing and compaction should read
Chapter 1, which shows how to solve routability and routing problems, and Chap-
ter 9, which presents and justifies a compaction procedure. Chapter 10 discusses
refinements and extensions of these algorithms. When describing algorithms, I as-
sume some knowledge of the techniques of computational geometry and algorithmic
graph theory.

Those who are interested in the application of topology to routing problems
should read the remaining chapters, beginning with the definitions in Chapter 2.
The core of this dissertation is the development of a theory of single-layer wire
routing in Chapters 3 through 7. Chapter 8 uses this theory to derive results about
the sketch model. Most of these chapters require familiarity with point-set topology:
a knowledge of elementary homotopy theory is also helpful. For those with no prior
exposure to algebraic topology, 1 have provided a short introduction to homotopy
theory in Chapter 2.
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J Single-Layer Wire Routing
12}‘»
e
R
o 3
! A problem that frequently arises in the design of computer components is that of
j:;q routing wires through some interconnection medium. Most wire-routing problems
.’:' are computationally hard: determining whether an instance of a routing problem
e is even solvable is usually NP-complete. In this thesis I show that if the wires are
* restricted to a single planar layer, and if rough routings of the wires with respect
o to the routing obstacles are given, then the wires can be routed efficiently and
:'-;; optimally. ‘Efficiently’ means that the routing algorithm runs in polynomial time,
:::} and ‘optimally’ means that it simultaneously minimizes the length of every wire. To
*".{s say it another way: Given the topology of a circuit layer, one can quickly produce a

legal and nonwasteful geometry for that layer, or determine that no legal geometry
, is compatible with the given topology. Figure 1 illustrates this kind of routing
X problem.
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My, Figure 1. An instance of a one-layer routing problem. The wires (grey paths
) g grey p
.,:" in the layout of panel (a) are rough routings. They are to be deformed into
- norintersecting paths in the grid (dotted lines) shown in part (b), with their
-4 endpoints kept fixed and without moving them onto or across any features (dark
o points and lines). Panel (b) shows a solution with minimum wire length.
h
A
R The fundamental fact about single-layer wire routing, which I prove, is that local
x routability conditions are necessary and sufficient for global routability. Consider
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Single-Layer Wire Routing Introduction

the layout in Figure 2. The wires cannot be routed: the topology forces too many
wires to pass between the obstacles A and B. In other words, the channel between
A and B has greater congestion than capacity. The routability of layouts like those
in Figures 1 and 2 is completely determined by the congestions and capacities of
channels. This result leads to efficient algorithms for testing routability, and also
to novel algorithms for layout compaction. I present these algorithms here.

B ' ] Figure 2. An unroutable instance. This
layout cannot be routed in the given topol-
B ogy because the channel between obstacles
A and B is overfull. More precisely, the cut
(striped segment) has space for only three
crossings by wires, and all four crossings of
'$] this cut are necessary, despite the fact that
only three distinct wires cross it.

What makes single-layer routing difficult and interesting is the possibility that
different parts of the same wire may interact. As Figure 2 shows, a wire can pass
through a channel more than once, and the different parts of the wire in that channel
are constrained differently. Thus a wire behaves in some ways like several wires and
in some ways like a single wire. To confront this issue I bring in ideas from homotopy
theory and show how to analyze single-layer wiring by lifting wires and cuts from
the routing region to its simply connected covering space. The covering space lets us
formalize and work with the notions of the amount of wiring “forced” to pass across
a cut, the regions that are “forbidden” to a wire, and the “necessary” crossings of
a cut by wires, all of which play major roles in one-layer routing problems.

A. Background

This section puts my routing problem—which will be defined formally in Sec-
tion 1A—into the context of other wire-routing problems, and it explains how that
problem grew out of earlier work. It shows how single-layer routing with rough
routings given generalizes the “river routing” problems previously studied, and how
further generalizations lead to NP-complete problems. Considerations like these
provide the theoretical impetus for my work. The following section offers an outline
of the thesis itself and an introduction to its main ideas.

- 14 -
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Part A Background

Types of wire-routing problems

Wire-routing problems abound, but they share some common characteristics.
The wires, when routed, must connect certain points called terminals in a specified
pattern, and they must satisfy some geometric constraints such as having a certain
minimum thickness and separation from one another. Additional constraints may
be imposed on the wires, e.g., that they be composed of rectilinear segments. The
space in which wires are to be placed is called the routing region. In almost all
practical problems, the routing region consists of one or more planes, or layers, with
wires being allowed to pass between layers only at certain points.

The character of a wire-routing problem depends largely upon the topology of
the routing region. Multilayer routing problems are usually NP-complete [51], even
when the routing region has a simple shape. For this reason, much of the theoretical
work on multilayer wire routing has concentrated on approximation algorithms [1,
4, 45). These algorithms do not attempt to route within a fixed region, but instead
they produce wirings that approach optimality in terms of the routing space or the
number of layers they use. Single-layer routing problems are also NP-complete in the
general case [20, 44). Several restricted single-layer routing problems are known to
be efficiently solvable, however, including those in which the routing region is simply
connected (8, 22, 41, 49, 52] or annular [2] and the terminals lie on its boundary.
One can also efficiently route edge-disjoint paths through a planar graph, provided
that the terminals lie on a single face of the graph [3, 17, 32, 42]. Such routings
are said to be in “knock-knee” mode. One can then convert the edge-disjoint paths
into multilayer routings {5, 42).

The tractable routing problems are of three kinds. In a pure routing prob-
lem, the routing region and the terminals are fixed; the algorithm must determine
whether the wires can be routed, and if so, find feasible realizations (or detailed
routings) for them. In most single-layer ~outing problems, one can also minimize
the length of every wire, which is desirable from a practical standpoint. Sometimes
one asks only whether the wires can be routed at all; then one is concerned with a
routability problem. The NP-completeness results mentioned above apply to rout-
ability problems. In a placement problem, one thinks of the terminals as being
attached to modules which can move. As modules move, the shape of the routing
region may change. The issue is to find placements for the modules and feasible
realizations for the wires so as to minimize some geometric quantity like the area of
the routing region.

Wiring models

When studying algorithms for wire-routing problems, one must work at a more
abstract level than that of physical devices. One needs a mathematical wiring model

- 15 -
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for the wires and the rules they must obey. For example, wires are usually repre-
sented as paths without thickness, but the minimum spacing between the (abstract)
wires is increased to allow for the thickness of the actual (physical) wires. If one
works with wires of differing thicknesses or materials, then the minimum separation
between two wires will depend on which wires they are.

The wiring model most popular among theorists is what I call the grid-based
model. It achieves simplicity and convenience without hiding any of the essential
difficulties of placement and routing. In this model the routing region is overlaid
with a rectilinear grid, and wires are required to be disjoint paths within the grid.
The spacing between the gridlines corresponds to the minimum separation between
wires. Other common models dispense with the grid and allow wires to contain
diagonal segments or even circular arcs. Some models also permit different wires to
have different separation requirements. My routing problems provide these options,
but the examples in this Introduction stick to the grid model.

River routing

A single-layer routing problem that is well understood is the one-layer river
routing problem {8] as refined by Leiserson and Pinter [22]. I state it for the grid-
based wiring model, although other wiring models may be substituted [48]. The
routing region is a rectangular channel, and the problem is to connect terminals
A, ..., A, on its bottom edge with corresponding terminals B, ..., B, on its
top edge. See Figure 3. Wires must be vertex-disjoint paths in the rectilinear grid
with integer gridpoints; all the terminals are assumed to have integral coordinates.
For technical convenience, the wires are allowed to run along the bottom gridline
of the channel, but not along the top. The terminals B, ..., B, must be in the
same order as A, ..., A, or else the wires would have to intersect, since the grid
is planar.

_ 1

Figure 3. River routing. An instance of the problem of river routing in a rectan-
gular channel: connect pairs of terminals (dark points) by nonintersecting wires
in a grid (not shown). The grey lines show one feasible set of realizations for the
wires. Dotted lines enclose the routing channel. The line from p to ¢ is a cut of
the channel; it has congestion 4 and capacity 4.
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Part A Background

When the wires can be legally routed, a simple, “greedy” algorithm suffices to
find their minimum-length feasible realizations in time proportional to the size of
the output. But to determine whether these realizations exist is even easier; one
can test routability in time proportional to n, the number of wires.

An instance of the river routing problem can be solved if and only if it satisfies
certain easily checked routability conditions. Consider a line segment, or cut, pq
that runs from the bottom edge of the channel to the top. Suppose that the termi-
nals to the left of p§ are A, through A; and B, through B;. Then |j — t| different
wires have terminals on opposite sides of g, and hence must cross pg. I call the
quantity |j — | the congestion of . On the other hand, the number of wires that
can cross pg without touching is equal to the horizontal or vertical separation be-
tween p and g, whichever is larger. I call this quantity the capacity of pg and say
that the cut pg is unsafe [6] if its congestion exceeds its capacity. If any cut in the
channel is unsafe, then there is no legal way to route all the wires. Less obvious is
the converse: if no cut in the channel is unsafe, then there is a legal way to route
all the wires. In fact, as shown in [22], the wires can be routed unless one of 2n
special cuts is unsafe. Thus to test routability, it suffices to check 2n inequalities of
the form

congestion of p§ < capacity of pq.

Because the conditions for routability are so simple, one can efficiently solve
various placement problems associated with river routing. For example, one can
determine how close together the two rows of terminals may be placed while per-
mitting the wires to be routed {8]. If the top row of terminals is free to move relative
to the bottom row, then one can find the offset between the two rows that allows
the minimum separation between them [34]. Finally, suppose that the terminals on
each side of the channel are partitioned into contiguous modules, as in Figure 3, and
that each module is free to move horizontally. Then one can position the modules
and route the wires so as to minimize the width of the channel [22].

Rough routings

The tractable single-layer routing problems share the property that rough rout-
ings of the wires can be determined in advance. To have a rough routing p of
a wire w means that every feasible realization of w can be continuously deformed
into p within the routing region. In mathematical language, every realization of w is
path-homotopic to p. When the routing region is simply connected, any two paths
between the terminals of w are path-homotopic, and hence any such path serves as a
rough routing for w. When the routing region is ring-shaped, rough routings cannot
be chosen arbitrarily, but only a few sets of rough routings need consideration. A
routing algorithm can simply try each set, and in fact the algorithm of 2] does just
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that. In contrast, when the routing region has an arbitrary number of holes, as
effectively happens in the NP-complete single-layer routing problems, the number
of sets of rough routings that need consideration seems to be exponential.

One is naturally led to consider single-layer routing situations in which rough
routings of wires are given. Pinter [41] proposed such a problem, called DRH
(*Detailed Routing given a Homotopy”),* which involved routing wires in a finite
rectilinear grid. An instance of DRH comprises (1) rectangular modules within a
bounding box, (2) terminals on the modules’ boundaries, and (3) nonintersecting
rough routings that connect pairs of terminals. DRH is a routability problem:
it asks whether the given rough routings can be continuously deformed, with their
endpoints fixed and without touching any other modules, so that the resulting wires
are disjoint paths in the grid.

(1) (ii

"} 1

Figure 4. The problem called DRH. Part (i) shows an instance of Pinter’s prob-
lem DRH. Solid rectangles are modules, dark points are terminals, and grey curves
are rough routings. This instance is routable, because the wires can be realized as
shown in (ii). (The grid is not shown.) The dotted line in (i) is a cut. Although
the rough routings cross it four times, two of those crossings are not necessary, as
they can be removed by deforming the rough routing p. Hence the congestion of
the cut is 2.

Like the river routing problem, DRH can be analyzed in terms of the congestions
and capacities of cuts. One defines a cut to be a line segment whose endpoints lie
on modules and whose interior falls in the routing region. The capacity of a cut is
the number of wires that can cross the cut without touching; it depends only on
the number of gridlines the cut crosses. The congestion of a cut is, in essence, the
number of times that wires are forced to cross the cut; it depends upon the topology

* By ‘homotopy’ he meant a set of rough routings, one for each wire to be routed.
Technically, the term ‘homotopy’ refers to a continuous deformation of topological maps.
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of the rough routings. As before, we say that a cut is unsafe if its congestion exceeds

;‘: its capacity. Cole and Siegel [6] showed that an instance of DRH is unroutable if

G and only if it has an unsafe cut.

:*% The characterization of routability has many applications. It was used in [6] to

! develop a fast algorithm for solving DRH, given a nethod of computing congestions

. of cuts. Leiserson and I presented such a method in a subsequent paper [21], thus

oy showing that DRH is solvable in polynomial time. We also set forth routability

:‘, conditions for a problem very similar to DRH and used them to construct a sim-

“ plified routability testing algorithm. As in the case of river routing, the routability

o conditions can be used to solve placement problems as well [29)].

;:::: Role of this thesis

": The fact that DRH is tractable suggests that single-layer routing problems may

R also be efficiently solvable when rough routings are specified. In fact, Leiserson and
I proposed a polynomial-time algorithm for such a problem in our paper {21]. Prov-

5 ing the correctness of our algorithm, however, turned out to be much more difficult

- than we expected. The problem was fundamental: we had almost no technical tools

ii‘;.‘-‘ for working with wires in multiply connected regions. The results in [6] concerning

3 DRH worked only for the grid-based wiring model, and even so, their mathemati-
cal foundations were unclear. The additional complexity that arises in continuous

‘:.:3 wiring models is considerable, as one can see by comparing the papers [52] and [22].

:ﬁ;n All told, the problem of converting rough routings to detailed routings was poorly

‘:: understood.

M In this dissertation I remedy that situation and show how single-layer routing

2 problems can be efficiently solved. My main technical contribution is a mathe-

}',::' matically rigorous theory of single-layer wiring. It gives necessary and sufficient

;:.; routability conditions for DRH-like problems, and it applies to a variety of common

:‘,'.q wiring models, gridless models included. In addition, it characterizes the minimum-

Y length feasible realizations of wires, thus shedding light on routing problems as

C well as routability problems. This theory allows me to justify and generalize the

:Z routability testing and routing algorithms given in my earlier paper [21].

::2 The theory of single-layer wire routing has applications to placement problems

!t as well. One placement problem of great practical importance is layout compaction

i with automatic jog insertion. This problem generalizes the problem of placing

e modules for river routing in a channel [22], and it can be solved similarly by means

i.' of routability conditions. In my master’s thesis [29] I presented a polynomial-time

" algorithm for this problem, but it was restricted to the grid-based wiring model.

:;: Using the new theory of single-layer wiring, I extend this algorithm to many other

o wiring models.

by
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Figure 5. An integrated circuit layout. This figure depicts a low-level represen-
tation of a portion of an integrated circuit. The layout comprises several layers:
each layer is nothing more than a set of polygonal regions. The regions are shaded
according to layer, and the shading of upper layers occludes that of lower layers.

B. Thesis Overview

)

: This section outlines the structure of the thesis and describes the main ideas behind

- cach chapter. It also provides some practical motivation for this research beyond

ay the theoretical reasons just discussed. Because the problems [ study are not easilv

&:: detined, a precise statement of my main results must wait until Section 1A.

K Thi< thesis studies three problems of single-layer wire routing that arise when

r.- t migh ronutings of wires are given. They concern an abstraction of a circuit laver

Pu called « <ketch. The problems are sketch routability, sketch routing, and a place-

:-'" tent problem: (one-dimensional) sketch compaction. 1 present polvnomial-time ‘

:-':' cueorithins for all three. These problems seem nearly as general as they can be and ‘l

<aiemain efficiently solvable. On the one hand. they subsume most of the single- ;

|
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........................................................................................................

of the lower layer of the circuit in Figure 5. It distinguishes between rigid devices
i dark grey) and flexible wires (light grey).

layer routing and placement problems that have previously been proven tractable.
On the other hand, natural variations on these problems that are less restrictive
are also NP-complete [41, 48], and hence are unlikely to have polynomial-time al-
gorithms.

Wires as flexible objects

One motivation for the sketch problems stems from the design of integrated
circuits (ICs) and printed circuit boards (PCBs). Figure 5 depicts part of the layout
for an integrated circuit: each grey tone corresponds to one layer of the chip. This
layout contains no explicit information about the functions performed by different
regions on a layer. The designer, on the other hand, considers some areas to be wires
and other areas to be device components, as shown in Figure 6. He or she is often
willing to let wires change in shape and length, but wants to control the shapes of
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active devices and the widths of wires, as these parameters have the greatest effect
on the performance of the circuit. This observation suggests that a design system
for integrated circuits should distinguish between wires and other components, and
should treat wires as flexible connections of fixed width. A sketch is an abstraction
of an integrated circuit layer that allows wires to be treated this way.

The type of system I envision would free the designer from concern with the
geometry of wires. The designer would provide the system with rough routings
for wires, and the system would either route them to. form a legal layout, or else
show the designer why no routing was possible. When the designer wished to move
some of the circuit devices, the system would automatically bend wires and move
other components as necessary to keep the layout legal. The problems of sketch
routability, routing, and compaction embody the main computational tasks that
such a system should be able to execute.*

Nature of this research

Despite its practical roots, this dissertation is in essence a theoretical study. I
have not implemented any of my algorithms, nor are the sketch problems them-
selves designed to model the complex rules that IC designs must obey. Instead,
the thesis is primarily concerned with the mathematical foundations of single-layer
wire routing. My approach allows me, in the analysis of sketch problems, to trade
complexity in the algorithms for complexity in their proofs of correctness. Thus the
algorithms I present are relatively simple, but thcir justification occupies the bulk
of this docuinent.

Central to both the algorithms and the theory is the concept of a cut: a path
in the routing region that spans two obstacles. As with other single-layer wire-
routing problems, the congestions and capacities of the cuts in a sketch determine
its routability. This theorem informs the algorithms for the sketch routability and
compaction problems; its application to routability testing is evident. Taking the
idea farther, I show that a sketch can be compacted by transforming the rout-
ability conditions given by cuts into constraints—simple linear inequalities—on the
positions of obstacles. Solving the resulting constraint system reveals the optimal
locations for the obstacles, including the terminals of wires. The compacted sketch
can then be routed to restore the wires.

The sketch routing algorithm requires a deeper result, and a new concept: that

* Such a system has recently been implemented 36, 37]. Called ‘Bubbleman’, it
employs similar ideas to those presented here, but its algorithms are quite different. Rather
than solving global routing and routability problems, it incrementally builds a layout with
minimal wire lengths as one inputs the components. It also performs two-dimensional
compaction with automatic jog insertion via simulated annealing [19].
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of a half-cut. Whereas a cut measures the congestion between two